MODULE 16
SKIM TUISYEN FELDA (STF) MATEMATIK SPM "ENRICHMENT"
TOPIC : EARTH AS A SPHERE TIME : 2 HOURS

1. ($50^{\circ} \mathrm{S}, 70^{\circ} \mathrm{E}$), G, H and K are four points on the earth's surface. F, G and H are on the same latitude such that FG is the diameter. The longitude of H is $45^{\circ} \mathrm{W}$.
(a) Find the longitude of G.
(b) An aeroplane flew due west from F to H . It then flew 4800 nautical miles due north to K . Given that its average speed for the whole journey was 680 knots, calculate
(i) the latitude of K ,
(ii) the distance, in nautical miles, from F to H ,
(iii) the time taken to complete the journey.

Answer:
(a)
(b) (i)
(ii)
(iii)
2. $\mathrm{G}\left(60^{\circ} \mathrm{S}, 20^{\circ} \mathrm{W}\right)$ and H are two points on the surface of the earth where GH is a diameter of the common parallel of latitude.
(a) Find the latitude of H .
(b) Given GL is a diameter of the earth. On the diagram in the answer space, mark the locations of H and L . Hence, state the location of L .
(c) Calculate the shortest distance, in nautical miles, from H to the South Pole.
(d) An aeroplane took off from G and flew due east along the common parallel of latitude at an average speed of 450 knots. The aeroplane took 8 hours to reach a point P. Calculate
(i) the distance, in nautical miles, from G to P,
(ii) the longitude of P .

Answer:
(a)

(c)
(d)
3. $P\left(51^{\circ} \mathrm{N}, 20^{\circ} \mathrm{W}\right)$ and Q are two points on the Earth's surface. PQ is a diameter of the latitude.
(a) Find the longitude Q.
(b) Given that PR is the Earth's diameter, mark the positions of Q and R on the diagram provided below. Hence, state the position of R.
(c) Calculate the shortest distance, in nautical miles, from Q to the North Pole.
(d) An aeroplane flew due west from P along the latitude with an average speed of 500 knots. The aeroplane took 9 hours to reach a point M . Calculate
(i) the distance, in nautical miles, from P to M,
(ii) the longitude of M .

Answer:
(a)
(b)
(c)
(d) (i)
(ii)
4. $R\left(40^{\circ} \mathrm{N}, 80^{\circ} \mathrm{W}\right), S$ and T are three points on the surface of the earth. $R S$ is the diameter of a parallel of latitude $40^{\circ} \mathrm{N}$. T is 6600 nautical miles to the south of R .
(a) State the longitude of S .
(b) Find the latitude of T .
(c) Calculate the shortest distance, in nautical miles, from R to S measured along the surface of the earth.
(d) A ship sailed from S to R along the common parallel of latitude and then due south to T . The total time taken for the journey was 20 hours. Calculate the average speed of the ship for the whole journey.

Answer:
(a)
(b)
(c)
(d)
5. $\mathrm{G}\left(65^{\circ} \mathrm{N}, 10^{\circ} \mathrm{W}\right)$ and $\mathrm{H}\left(65^{\circ} \mathrm{N}, \theta^{\circ} \mathrm{E}\right)$ are two points on the surface of the earth. GH is a diameter of the parallel of latitude $65^{\circ} \mathrm{N}$. A yacht sailed with an average speed of 375 knots from G to H using the shortest distance, as measured along the surface of the earth.
(a) State the value of θ.
(b) Mark the positions of points G and H on the diagram.
(c) Calculate the shortest distance, in nautical miles, from point G to point H .
(d) Calculate the total time, in hours, taken for the yacht to sail from point G to point H .

Answer:
(a)
(b)

(c)
(d)
6. $P\left(50^{\circ} \mathrm{S}, 40^{\circ} \mathrm{w}\right), Q\left(50^{\circ} \mathrm{S}, 90^{\circ} \mathrm{E}\right), R$ and T are four points on the earth's surface. PR is the diameter of the common latitude.
(a) (i) State the longitude of R .
(ii) Calculate the ratio of the distance from P to R through the South Pole to its distance through North Pole.
(iii) Calculate the distance, in nautical miles, from P to Q due east as measured along the common latitude.
(b) Find the latitude of T which is situated 3900 nautical miles due North of Q .

Answer:
(a) (i)
(ii)
(iii)
(b)

MODULE 16 - ANSWERS
TOPIC: EARTH AS A SPHERE
1.
(a) $110^{\circ} \mathrm{W}$
$2 m$
(b)(i) $\angle \mathrm{HOK}=\frac{4800}{60}$ 1m $=80^{\circ} \quad 1 \mathrm{~m}$

Latitude of $K=80-50$ $=30^{\circ} \mathrm{N}$

1 m
(ii) Distance F to H
$=(70+45) 60 \cos 50^{\circ} \quad 2 \mathrm{~m}$
$=4435.23 \mathrm{n} . \mathrm{m} \quad 1 \mathrm{~m}$
(iii) Time $=\frac{4435.23+4806 \mathrm{~m}}{680}$

$$
=13.58 \mathrm{hrs} \quad 1 \mathrm{~m}
$$

2. (a) $60^{\circ} \mathrm{S} \quad 2 \mathrm{~m}$
(b) Point H 1m Point L 1m $\mathrm{L}\left(60^{\circ} \mathrm{N}, 160^{\circ} \mathrm{E}\right) \quad 1 \mathrm{~m}$
(c) Distance H to south pole $=30 \times 60 \quad 1 \mathrm{~m}$ $=1800 \mathrm{n} . \mathrm{m} . \quad 1 \mathrm{~m}$
(d) (i) Distance $=450 \times 8 \quad 1 \mathrm{~m}$ $=3600 \mathrm{n} . \mathrm{m} .1 \mathrm{~m}$
(ii) $\angle \mathrm{GOP}=\frac{3600}{60 \cos 60^{\circ}} \quad 2 \mathrm{~m}$ $=120^{\circ}$

Longitude $=120^{\circ}-20^{\circ}=100^{\circ} \mathrm{E} \quad 1 \mathrm{~m}$
3. (a) Longitude of $R=95^{\circ} E$
(b) Distance PR $=40 \times 60$

1 m
1 m
(c) Distance PQ $=(85-30) 60 \cos 70^{\circ}$ $=1128.67$ n.m.
(d) Time $=\frac{160 \times 60}{600}$

$$
=16 \mathrm{hrs}
$$

(a) Longitude of $\mathrm{S}=100^{\circ} \mathrm{E}$
$2 m$
(b) $\angle \mathrm{ROT}=\frac{3600}{60}$

$$
=60^{\circ}
$$

Latitude of $T=60-40$
$=20^{\circ} \mathrm{S}$
1 m
1 m
(c) Distance R to S

$$
\begin{array}{ll}
=100 \times 60 & 1 \mathrm{~m} \\
=6000 \mathrm{n} . \mathrm{m} . & 1 \mathrm{~m}
\end{array}
$$

(e) Average speed $=\frac{180 \times 60 \times \cos 40+3600}{20}$

$$
\begin{aligned}
& =\frac{8273.30+3600}{20} \\
& =593.66 \mathrm{n} \cdot \mathrm{~m} .
\end{aligned}
$$

1m
5. (a) $\theta=170^{\circ} \mathrm{E} \quad 2 \mathrm{~m}$
(b) Point G
$2 m$
Point H
2 m
(c) Distance G to H

$$
\begin{array}{ll}
=50 \times 60 & 2 \mathrm{~m} \\
=3000 \mathrm{n} . \mathrm{m} & 1 \mathrm{~m}
\end{array}
$$

(d) Time $=\frac{3000}{375}$

$$
=8 \mathrm{hrs}
$$

6. (a) (i) Longitude of $R=140^{\circ} \mathrm{E} \quad 2 \mathrm{~m}$
(ii) Distance PR via S: Distance PR via N
80x 60: 280 x $60 \quad 2 m$
$2: 71 m$
(iii) Distance P to Q

$$
\begin{array}{ll}
=(40+90) 60 \times \cos 50^{\circ} & 3 \mathrm{~m} \\
=5013.74 \mathrm{n} \cdot \mathrm{~m} & 1 \mathrm{~m}
\end{array}
$$

(b) \angle QOT $=\frac{3900}{60}$ 1 m

$$
=65^{\circ}
$$

1m
Latitude of $\mathrm{T}=65^{\circ}-50^{\circ}$
$=15^{\circ} \mathrm{N}$
1m

