MODUL 11 SKIM TIUSYEN FELDA (STF) MATEMATIK SPM "ENRICHMENT" TOPIC : TRANSFORMATIONS TIME : 2 HOUR

1. (a) Diagram 1 shows two points, *M* and *N*, on a Cartesian plane.

DIAGRAM 1

Transformation **Y** is a translation $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$.

Transformation \mathbf{P} is a reflection in the x-axis.

(i) State the coordinates of the image of point **N** under transformation **Y**.

(ii) State the coordinates of image of point M under the following transformation:

Answer:

(a) (i)

(ii) (a)

(b)

(b) Diagram 2 shows three trapezium *ABCD*, *EFGH* and *PQRS* on a Cartesian plane.

Trapezium *ABCD is* the image of trapezium *PQRS* under transformation \mathbf{M} . Trapezium *EFGH is* the image of trapezium *ABCD* under transformation \mathbf{N} .

(i) Describe in full transformation :

(a) M	
(b) N	[6 <i>marks</i>]

(ii) Calculate the area of trapezium *EFGH*, if the area of trapezium *ABCD* is 25 unit². [3 marks]

Answer:

(b) (i) (a)

(b)

2. (a) Diagram 3 shows the point *K* on a Cartesian plane.

The transformation **R** represents a 90[°] anticlockwise rotation about the center (3, 2). The transformation **T** represents a translation $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$. State the coordinates of the image of the point *K* under the following transformations.

(i) **R**

(ii) RT

[3 marks]

Answer:

(a) (i)

(b) Diagram 4 shows three quadrilateral *EFGH*, *ABCD* and *OFJK* on a Cartesian plane. *EFGH* is the image of *ABCD* under the transformation **U** and *OFJK* is the image of *EFGH* under the transformation **V**.

(i) Describe completely the transformation,

(a) U ,	
(b) V .	[6 <i>marks</i>]

(ii) Given that the shaded area is 120 unit $^{\rm 2}$, find the area of ABCD. [3 marks]

Answer:

(b) (i) (a)

(b)

3. (a) Diagram 5 shows the point *K* on a Cartesian plane.

DIAGRAM 5

Transformation **S** is a translation $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$. Transformation **T** is a reflection in the x = 9.

(i) State the coordinates of the image of point *F* under transformation **S**.

(ii) State the coordinates of image of point *F* under transformation **TS**. [3 marks]

Answer:

(a) (i)

(b) Diagram 6 shows three triangle *PQR, ACG* and *EFG* on a Cartesian plane.

Triangle ACG is the image of triangle PQR under transformation **V**. Trapezium EFG is the image of triangle ACG under transformation **W**.

(i) Describe in full transformation :

(a) V	
(b) W	[3 <i>marks</i>]

(ii) Given that the area of triangle *EFG* represents a region of area 72 unit². Calculate the area, in unit², of the region represented by triangle PQR.

[6 marks]

[Answer:

(b) (i) (a)

(b)

4. (a) Diagram 7 shows the point M on a Cartesian plane.

DIAGRAM 7

Transformation **P** is a reflection in the line x = -3. Transformation **R** is a rotation of 90° clockwise about the origin.

State the coordinates of the image of point **M** under the following transformation:

(i) **P**

(ii) RP

[3 marks]

Answer:

(a) (i)

(b) Diagram 8 shows three trapezium *ABCD*, *RSTU* and *WSYX* on a Cartesian plane.

WSYX is the image of ABCD under combined transformation UV.

(i) Describe in full transformation :

(a) U	
(b) V	[5 <i>marks</i>]

(ii) Given that the area of shaded region WXYTUR represents a region of area 150 cm². Calculate the area, in cm², of the region represented by RSTU.
[4 marks]

Answer:

(b) (i) (a)

(b)

5. (a) Transformation **R** is a 90° clockwise rotation at centre (2, 2).

Transformation **T** is a translation $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$

State the coordinate of the image for coordinate (6, 4) under the following transformations:

(i) **R**².

(ii) **TR**.

[4 marks]

Answer:

(a) (i)

(ii)

(b) Diagram 9 shows quadrilateral , *ABCD*, *PQRS* and *EFGH*, drawn on a Cartesian plane.

PQRS is the image of ABCD under transformation **S** and EFGH is the image of PQRS under transformation **Q**.

(i) Describe in full transformation :

(a)Transformation S	
(b)Transformation Q	[5 <i>marks</i>]
(ii) Given the area of ABCD is	64 unit ² , calculate the area of shaded region.
	[3 marks]

Answer:

(b) (i) (a)

(b)

JAWPAN MODUL11 TOPIC : TRANSFORMATIONS

1	(a) (i) (ii)(a) (b)	(0, -1) (-3, -4) (-1, -2)	1 1 1
	(b)(i)(a) (b) (ii)	M is a rotation of 90° clockwise about point (1,3) N is an enlargement with centre at (2,0) and a scale factor of 2 Area EFGH = k^2 (Area ABCD)	3 3
()		$= 2^{2}(25)$ = 100 unit ²	3
2	(a)(i) (ii)	(4, -2) (1, 0)	1 2
	(b)(i)(a) (b) (ii)	U is a rotation of 90° clockwise about the point (1, 1) V is an enlargement with centre at (4, 0) and scale factor of 2 Area OFJK = k^2 (Area ABCD) 120 + Area ABCD = 2^2 (Area ABCD)	3 3 3
		Area ABCD = 40 unit ²	
3	(a)(i) (ii)	(12, 7) (6, 7)	1 2
	(b)(i)(a) (b) (ii)	V is a rotation of 90° clockwise about point (7, 0) W is an enlargement with centre at (7, 3) and scale factor of 3 Area EEG = k^2 (Area POR)	3 3
	(")	$72 = 3^{2} (Area PQR)$ Area PQR = 8 unit ²	3
4	(a)(i) (ii)	(-3, 6) (6, 11)	1 2
	(b)(i)(a)	U is a translation $\begin{pmatrix} -8\\ 3 \end{pmatrix}$	1
	(b)	V is an enlargement with centre at $(-3, 8)$ and scale factor of 2.	3
	(11)	Area WXYS = k^2 (Area RSTU) 150 + RSTU = 2^2 (Area RSTU) Area RSTU = 50 cm ²	4
5	(a)(i) (ii)	(-3, 0) (4, 4)	2 2
	(b)(i)(a)	S is a reflection in the line $x = 1$	2
	(ii)	Area ABCD + Area of shaded region= k^2 (Area ABCD)	3
		64 + Area of shaded region = $2^{2}(64)$ Area of shaded region = $(256 - 64) \text{ cm}^{2}$ Area of the shaded region = 192 cm^{2}	3